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Abstract

The infinities or singularities (points of spacetime where the curvature blows
up) are considered as serious problems in physics. Classical general relativity predicts
spacetime singularities. This theory does not give an enough description of the
behavior of the spacetime in the high curvature regions. On the other hand, in
quantum field theory there are other kinds of singularities coming from the non-
renormalizability of this theory. Moreover, there are several problems in cosmology
such as the horizon and flatness problem.

All these considerations point in the direction of the Limiting Curvature
Hypothesis (LCH). This hypothesis provides natural solutions to gravitational
singularities and introduces a more realistic cosmological model. According to this
hypothesis, the curvature of spacetime at any point can never be larger that certain
limiting value.

In order to implement this hypothesis, we must modify the general relativity
by introducing a limiting value for the curvature; this can be done by modifying

Einstein’s field equations:
R#Y —% Rg*" = —-8aGT*"

By inserting a cosmological constant A, which is the limiting value of curvature, the

modified field equations are:



R~ LRgw — L A= 1= RO ygm — _gaaTm
SReT = ( AZ)9

At low curvatures, when R is very small, the new equations are reduced to Einstein’s
field equations.

In chapter 2, we introduced the modified field equations which satisfy LCH
and found first and second order differential equations from the time-time and space-
space components of the field equations for both matter and radiation universes and
for different kinds of geometries of spacetime, we also obtained nonsingular
spherically symmetric solution that represent a giant star when it collapses to form a
black hole. In chapter 3, we solved the differential equations numerically and found

nonsingular solutions and we plotted these solutions.



Chapter 1

Introduction

It is well known that the most important problems in physics are
infinities or singularities. Hawking and Ellis [1] define a singularity as a
point where the metric tensor (to be defined later) is undefined or is not
suitably differentiable. However the trouble with this is that one could
simply cut out such points and say that the remaining space represented
the whole of spacetime, which would then be nonsingular according to
this definition. Indeed, it would seem inappropriate to regard such
singularities as being part of spacetime, because the equations of physics
would not hold at them and it would be impossible to make any
measurement. Another definition is that singularities are points of the
spacetime where the curvature blows up. They are tremendously dense
points with approximately zero volume. Classical general relativity
(CGR) predicts spacetime singularities as demonstrated by Hawking,
Penrose, and Ellis in a set of singularity theorems [1,2]. Hawking and
Penrose state that, for reasonable matter content which is free from exotic
matter (exotic matter is a concept in particle physics which covers any
material that violates one or more classical conditions or is not made of

known baryonic particles. Such materials would possess qualities like



negative mass or negative energy or being repelled rather than attracted
by gravity), spacetimes in general relativity are almost guaranteed to be
geodesically incomplete (have singularities). The singularity theorems of
Hawking and Penrose imply that general relativity is an incomplete
description of the behavior of spacetime at high curvatures. As examples,
the two most useful spacetimes in general relativity, the Schwarzschild
solution describing black holes and the Friedmann-Robertson-Walker
(FRW) solution describing homogeneous, isotropic cosmologies, both
contain important singularities. On the other hand, in quantum field
theory in general and in quantum gravity in particular one is faced with
other kinds of singularities coming from the nonrenormalizability of these
theories [3]. The big bang and the big crunch in addition to the
singularities resulting in the gravitational collapse of massive stars which
collapse to form black holes are physical examples of gravitational
singularities.

Moreover in cosmology there are several problems, (the horizon,
the flatness, the isotropy of microwave background radiation, and the
seeds from which galaxies were formed). All these problems found their
natural solution by introducing a long period of inflation, during which
the universe expanded exponentially and the spacetime has almost de

Sitter geometry [4].



All the above considerations point in the direction of the limiting
curvature hypothesis [5,6,7,8]. In this hypothesis, CGR will be modified
in order to prevent the occurrence of infinities. This hypothesis provides
natural solutions to gravitational singularities by introducing a limiting
value of the curvature. As a result this hypothesis introduces a reasonable
and a realistic cosmological model of the universe since in the real
universe there is no meaning to say that something is a singularity and has
zero volume. In order to implement this hypothesis we will modify
Einstein’s gravitational action and field equations then we will find
cosmological equations from the new field equations that describe the

behavior of the universe for different kinds of matter.



Chapter 2

Theoretical Background

In this chapter, we will talk about classical general relativity and
Einstein’s field equations, and then we will introduce the limiting
curvature hypothesis by modifying Einstein’s field equations. After that
we will find differential equations from the new field equations that
describe the behavior of the universe for different kinds of matter. We
will begin by listing some astrophysical terminologies that appear

frequently in cosmology and astronomy because of their importance.

2.1 Astrophysical Terminologies

2.1.1 The spacetime

It is a mathematical model that combines space and time into a
single model. Spacetime is usually interpreted with space being three-

dimensional and time as the fourth dimension.
2.1.2 The big bang

In physical cosmology, the Big Bang is the scientific theory that
the universe emerged from a singularity about 13.7 billion years ago.
Physicists do not widely agree on what happened before this, although

CGR predicts a gravitational singularity. Now what are the major



evidences which support the big bang theory? The first evidence is that
galaxies appear to be moving away from us at speeds proportional to their
distances, this is called “Hubble’s Law” which is:

v=H,r (2.1)
where v is the recessional velocity of the galaxy or other distant object, »

1s the distance to the galaxy or object, and /|, is Hubble’s constant which

is equal to 71 + 7 km/s.Mpc ' ( the value 71 km/s.Mpc is equal to 2.3x10"
'8 s1). This observation supports the expansion of the universe and
suggests that the universe was once compact.

The second piece of evidence is that if the universe was initially
very hot, as the big bang theory suggests, we should be able to find some
remnant of this heat. In 1965, Penzias and Wilson discovered a 2.7 K the
Cosmic Microwave Background radiation (CMB) which fills the entire
observable universe. It was generated in the early universe about 300 000
years after the big bang and fills all space almost uniformly. This

radiation has the same distribution in wavelength as does radiation in an

enclosure whose walls are held at a temperature of 2.7 K. This enclosure

! The parsec (pc) is a unit of length used in astronomy, and its length is based on the method of

trigonometric parallax, one of the oldest methods for measuring the distances to stars. It is defined
to be the distance from the Earth to a star that has a parallax of 1 arcsecond when the viewing
position changes by 1 AU. The actual length of a parsec is approximately 3.086 x10" kilometers,

3.262 light-years or 1.918x10"* miles)



is the entire universe. The cosmic microwave background radiation is
considered as evidence which supports the big bang theory. This is
thought to be the remnant which scientists were looking for.

Finally, the abundance of the light elements (Hydrogen and
Helium) found in the observable universe is thought to support the big

bang theory.

2.1.3 The big crunch

This is the hypothesis that the universe will collapse upon itself
after its expansion eventually stops. It is a counterpart to the Big Bang. It
may happen if the gravitational attraction of all the matter in the universe
were high enough; the expansion of the universe would slow down and
then reverse. The universe would then contract and all matter and energy

would be compressed into a gravitational singularity.
2.1.4 The horizon problem

Collins [9] defines the horizon problem as a problem that arises
from the similarity of conditions in different parts. The microwave
background radiation from opposite directions in the sky is characterized
by the same temperature which is 2.7 K. Such similarity could only be
established by mutual interactions which could never have taken place,
because the regions of space from which they were emitted at 500,000

years were more than light transit time apart and could not have



"communicated" with each other to establish the apparent thermal
equilibrium; they were beyond each other's "horizon". This problem is

called the horizon problem.

2.1.5 The flatness problem

It is an observational problem associated with FRW metric [10]. In
general, the universe can have three kinds of geometries (hyperbolic,
Euclidean, or elliptic geometry) depending on the total energy density of
the universe. It is hyperbolic if its density is less than the critical density,
elliptic if greater, and Euclidean at the critical density. The critical density
is the boundary value between the model of the universe which states that
the universe will expand forever (open model) and the model which says
that the universe will recollapse (closed model). A measurement of the
actual density of the universe could be compared to the critical density in
order to determine the fate of the universe. The critical density is given by
[11]:

3H,

Parn =g == 5x10% g /cm’ (2.2)

where G is the gravitational constant. The curvature of space depends on

the ratio Q) =P For Q, greater than 1, the universe has positively
pcrit

curved or spherical geometry. For Q, less than 1, the universe has



negatively curved or hyperbolic geometry. For Q, equal to 1, the

universe has Euclidean or flat geometry. The behavior of the universe is
determined according to its geometry.

The flatness problem arises because of the observation that the
density of the universe today is very close to the critical density required
for spatial flatness. Since the total energy density of the universe departs
rapidly from the critical value over cosmic time, the early universe must
have had a density even closer to the critical density, leading
cosmologists to question how the density of the early universe came to be
fine-tuned to this special value. In the later discussion, we will find
cosmological equations that describe the universe in the three cases and
for different kinds of matter. Figure (2.1) illustrates the kinds of

geometries of the universe.

Figure (2.1) geometries of the universe [12]



2.1.6 De Sitter geometry

De Sitter geometry is the maximally symmetric nonsingular
vacuum solution of Einstein's field equation with a positive cosmological
constant A. This geometry describes the expansion of the universe
according to the following equation:

a(t) =cosh(?) (2.3)
where a(f) is the scale factor which describes the expansion of physical
spatial distances and ¢ is time. The vacuum dominated space is known as
a de Sitter space [10]. Figure (2.2) illustrates the difference between the

de sitter solution and a singular solution.

radius radius

de sitter solution

§.
o

singular solution

Figure (2.2) de sitter solution vs a singular solution.



2.1.7 Homogeneous and isotropic cosmology

Carroll [11] defines homogeneity as the statement that the metric
is the same throughout the space. And he defines isotropy as the
statement that at any specific point in the space, the space looks the same
no matter what direction you look in. A space can be homogeneous but
nowhere isotropic, or it can be isotropic around one point without being
homogeneous (such as a cone, which is isotropic around its vertex but
certainly not homogeneous). On the other hand, if a space is isotropic
everywhere then it is homogeneous. Likewise, if it is isotropic around one

point and also homogeneous, it will be isotropic around every point.

2.2 A brief review of CGR

It is well known, in classical mechanics, that gravitation is caused
by forces between masses. In the theory of general relativity, Einstein
showed that, instead, gravitation is due to curvature of spacetime that is
caused by the presence of matter. The matter tends to pull the coordinates
system toward them so the coordinates system appears to be curved
(Figure (2.3)). CGR calls for the curvature of spacetime to be produced
by the mass-energy and momentum content of the matter in spacetime. In
the following subsections, we will discuss some fundamental topics in

general relativity.

10
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Figure (2.3) curvature caused by matter [13]

2.2.1 Principle of equivalence

“Einstein suddenly realized, while sitting in his office in Bern,
Switzerland, in 1907, that if he were to fall freely in a gravitational field
(think of a sky diver before she opens her parachute, or an unfortunate
elevator if its cable breaks); he would be unable to feel his own weight.
Einstein later recounted that this realization was the "happiest moment in
his life", for he understood that this idea was the key to how to extend the
Special Theory of Relativity to include the effect of gravitation. We are
used to seeing astronauts in free fall as their spacecraft circles the Earth
these days, but we should appreciate that in 1907 this was a rather
remarkable insight”. This principle is the fundamental postulate of the
general theory of relativity which says, in other words, that [13]
“gravitation and acceleration are equivalent. If someone were locked up

in a small box, he would not be able to tell whether the box was at rest on

11



Earth and subject only to the Earth’s gravitational force, or accelerating
through space at 9.8m/s® and subject only to the force producing that
acceleration. In both situations he would feel the same and would read the
same value for his weight on a scale. Moreover, if he watched an object
fall past him, the object would have the same acceleration relative to him

in both situations”.
2.2.2 Manifolds and geodesics

A manifold is an abstract mathematical space in which every point
has a neighborhood which resembles Euclidean space, but in which the
global structure may be more complicated. It is the curved-space
generalization of the notion of "Euclidean space". Carroll [11] said that
the manifold is a space which may be curved and have a complicated
topology, but in local regions it looks just like R" which is the vector
space for the n-dimensional vectors.

A geodesic is the curved-space generalization of the notion of a
"straight line" in Euclidean space. We all know what a straight line is: it is
the path of shortest distance between two points. But there is an equally
good definition; a straight line is a path which parallel transports its own

tangent vector.

12



2.2.3 Tensors

Tensors provide the mathematical framework for formulating and
solving problems in areas of physics such as elasticity, fluid mechanics,
and general relativity. Tensors are very important in general relativity
since FEinstein’s field equations are tensor equations. In order to
understand the mathematics of general relativity, we should understand
the mathematics of tensors. In this subsection, we will talk about this
important topic.

It is easy to understand the second-rank tensor as it is a matrix
with a number of rows and columns. An n-th-rank tensor in m-
dimensional space is a mathematical object that has n indices and m"
components and obeys certain transformation rules. Each index of a
tensor ranges over the number of dimensions of space. Tensors are
generalizations of scalars (that have no indices), vectors (that have
exactly one index), and matrices (that have exactly two indices) to an
arbitrary number of indices.

The notation for a tensor is similar to that of a matrix (i.e., a;),
except that a tensor may have an arbitrary number of indices, ajj, aijk,ai jk,

where the upper indices are called "contravariant" indices and the lower

indices are called "covariant" indices. Note that the positions of the slots

13



in which contravariant and covariant indices are placed are significant so,
for example, a,-jk 1s distinct from a,-jk.

While the distinction between covariant and contravariant indices
must be made for general tensors, the two are equivalent for tensors in
three-dimensional Euclidean space, and such tensors are known as
Cartesian tensors. The contraction of a tensor occurs when a pair of
indices (one a subscript, the other a superscript) of the tensor are set equal
to each other and summed over. In the Einstein notation this summation is

built into the notation. The result is another tensor with rank reduced by

two. The Einstein notation is: @,a’ =Y a,a’

The zeroth-rank tensors can be represented by scalars, first-rank
tensors can be represented by vectors, and the second-rank tensors can be
represented by matrices. In the following subsections, we will talk about
four tensors that are very important in CGR, these tensors are: the metric
tensor, the Riemann tensor, the Ricci tensor, and the stress-energy tensor.

2.2.3.1 The metric tensor

It is the fundamental object of study in general relativity.
Mathematically, spacetime is represented by a 4-dimensional
differentiable manifold M and the metric is given as a covariant second-

rank symmetric tensor on M. Physicists usually work in local coordinates

x* (where u runs from 0 to 3):

14



X =tx'=xx=yx =z (2.4)

the metric is represented by the following equation:
ds® = g, dx"dx" (2.5)

the factors dx" are the gradients of the scalar coordinate fields x".
The metric is thus a linear combination of tensor products of the gradients
of coordinates. With the quantity dx" being an infinitesimal coordinate
displacement, the metric acts as an infinitesimal invariant interval squared
or line element.
A simple example of the metric is the metric of flat spacetime
which is [8]:
ds’ =—dt’* +dx’ +dy’ +dz’ (2.6)
wherec =1. If we compare equation (2.5) with equation (2.6) taking into
consideration equation (2.4), the metric tensor can be represented by the
following matrix:
-1

uvo_

2.7)

oS O = O
S~ O O
—_ o O O

From the matrix representation of the metric tensor we see that:

g” =g" =—1 (which is called the time-time component of the metric

22

tensor, and g''=g” =g” =g” =1 (which are called the space-space

components of the metric tensor).

15



In spherical coordinates, the flat space metric is:
ds® = —dt’ +dr’ +r>dQ’ (2.8)
where dQ* =d6* +sin” @d¢’ is the standard metric on a 2-sphere which

is considered as a good example of a space with curvature. It is the locus
of points in R’ at distance 1 from the origin.

Another metric is FRW metric which is [14,15,16]:

dr?
1—kr?

ds* = —dt’ +a2(t)[ +r2dﬂzj (2.9)

here r is dimensionless and the dimension in a, & is a constant parameter
that determines the curvature of the universe. If k=1, the universe is
closed, positively curved, and finite. If £=0, the universe is open, flat, and
infinite. If 4=-1, the universe is open, negatively curved, and infinite.
FRW is the standard big bang model. It is the solution of the gravitational
field equations of general relativity. These can describe open or closed
universes. All these FRW universes have a singularity at the origin of
time which represents the big bang. FRW spacetimes come in a great
variety of styles, expanding, contracting, flat, curved, open, closed, etc.

The relation between Q and kis [11]:

Q,-1= (2.10)

Also there is an important metric in CGR which is the

Schwarzschild metric [11,18]:

16



ds® = —(1 - ZCiM jdﬁ +(1 - 2iM j_ldrz +r2dQY (2.11)
where M is a constant with the dimensions of mass. The Schwarzschild
solution (we will derive it later) describes the gravitational field outside a
spherical, non-rotating mass such as a (non-rotating) star or black hole. It
is also a good approximation to the gravitational field of a slowly rotating
body like the Earth or Sun. It is the most general spherically symmetric,
vacuum solution of the Einstein field equations.

2.2.3.2 Riemann tensor, Ricci tensor, and Ricci scalar

The Riemann tensor [19], or the Riemann-Christoffel curvature
tensor [17], or Riemann curvature tensor [14] is a four-index tensor that is
useful in general relativity since it gives a description of the curvature of
spacetime. It is the only fourth-rank tensor that can be constructed from
the metric tensor and its first and second derivatives. Since the Riemann
tensor is a four-index tensor in a four-dimensional spacetime, it has a 4* =
256 components. The Riemann tensor is defined in the following equation
[20]:

R/U

vop = Vige — Ul s T T —TLT0 (2.12)

va,p

where @'are the Christoffel symbols and the comma in the equation

denotes differentiation (I'); , = 0,/ ). Christoffel symbols are defined

17



from the metric tensor and its derivatives according to the following

equation [11]:
re L ""(8 +0 -0 ) 2.13
/ll/ 2 g /,[gvp \)gp‘[j pg,LlV ( . )

The contraction of the Riemann tensor on the first and third

indices is known as the Ricci tensor [11]:
R,uv = Riﬂ,v (2 14)

the components of the Ricci tensor for metric (2.9) are [17]:
a

B (2.15)

Rtt = 3
R, =—(aid+24> +2k)g,

where R, is the time-time component of the Ricci tensor, R, is the
space-space components, and g, is the metric for a three-dimensional

maximally symmetric space which can be defined according to the

following equation:
g, =a’(0g, (2.16)
The contraction of the Ricci tensor is the Ricci scalar (also known
as the scalar curvature). It is obtained by setting the indices of the Ricci
tensor equal [11]:

R=R'=g"R, (2.17)

If we use Einstein notation here we have R = R}/ = ZRL‘ =R)+R +...,
u"

18



this summation is equal to the trace of the Ricci tensor. The relation
between the Ricci scalar and the scale factor is obtained by multiplying
the metric tensor matrix with the Ricci tensor matrix and finding the trace

of the resulted matrix. This procedure gives:

R:—%(aa+a2+k) (2.18)
a

2.2.3.3 Stress-energy tensor

In this section, we will define the stress-energy tensor or the
energy-momentum tensor of a perfect fluid. It tells us all we need to know
about the system as energy density, pressure, stress, etc. Let’s consider
the very general category of matter which may be characterized as a fluid
(a continuum of matter described by macroscopic quantities such as
temperature, pressure, viscosity, etc. In general relativity, all interesting
types of matter can be thought of as perfect fluids, from stars to
electromagnetic fields to the entire universe. Schutz [19] defines a perfect
fluid to be one with no heat conduction and no viscosity, while Weinberg
[17] defines it as a fluid which looks isotropic in its reference frame and
these two definitions seem to be equivalent. Operationally, you should
think of a perfect fluid as one which may be completely characterized by
its pressure and density. The stress-energy tensor of a perfect fluid is

defined as [10,11]:
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T =(p+ p)UU" + pg"* (2.19)
where p is the fluid’s density, p is its pressure, and U is the 4-velocity of
the fluid.

The 4-velocity is a four-vector, a vector in four-dimensional
spacetime that replaces classical velocity, a three-dimensional vector. The
components of the 4-velocity of a perfect fluid at rest or in comoving

frames are given by:

(2.20).

Figure (2.4) shows the components of the stress-energy tensor.

energy density energy flux

viscosity +1.,re|.|:u.|:ity

pressure

momentum density momentum flux

Figure (2.4) components of the stress-energy tensor [21]
By using equations (2.7), (2.19), (2.20) we can write the stress-

energy tensor of a perfect fluid at rest in matrix form as:



T = 2.21)

o o o
o o ©
o © o
==

as we can notice the elements (T7,i# j) are all zero since there are

neither viscosity nor heat conduction nor motion in the perfect fluid.

From the matrix representation of the stress-energy tensor we see that:
T =T" = p (the time-time component of the stress-energy tensor), and
T"=T*=T"=T" =p (the space-space components of the stress-

energy tensor).

2.2.4 Einstein field equations (EFEs)

EFEs can be derived from the Hilbert-Einstein action [22]:

S, =h| Ry-gd'x (2.22)
where g is the determinant of the metric tensor (g“"), R is the Ricci
scalar curvature which is the trace of the Ricci curvature tensor (R*"), &
is the constant //16xG, R,/— g is the Lagrangian density, and the integral

is taken over a specified region of spacetime.
To derive the full field equations, a matter Lagrangian L,, is added

to the above action:

S = [[R+ L, }J-gd*x (2.23)
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In physics, the action is an integral quantity that is used to
determine the evolution of a physical system between two defined states.
The evolution of a physical system between two states is determined by
requiring the action to be minimized or, more generally, to be stationary.
This requirement leads to differential equations that describe the true
evolution. Conversely, an action principle is a method for reformulating
differential equations of motion for a physical system as an equivalent
integral equation.

The most commonly used action principle is Hamilton’s principle
which states that the true evolution g(#) of a system described by N
generalized coordinates ¢ = (¢1,9>,...,qn ) between two specified states
q(t;)) and q(t;) at two specified times ¢;, ¢, is an extremum (i.e., a

stationary point, a minimum, a maximum, or a saddle point) of the action

S[q(t)]:jL(q,q',t)dt where L(q,q,t)is the Lagrangian function of the

4
system. Accordingly, the actual evolution of a physical system is the
solution of the equation:

oS

——=0 2.24
(1) 229

Let’s go to an analogy from one-dimensional classical mechanics

by taking the following action:
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S = j L(x, ¥)dt (2.25)

we assume here that the Lagrangian L (the integrand of the action
integral) depends only on the coordinate x and its time derivative X, and
does not depend on time explicitly. The requirement that S be stationary
implies that oS must be zero, this can be true only if :

4oL o _, (2.26)

dt ox Ox
which is the Euler-Lagrange equation.
The EFEs may be obtained from the variation of the action in

equation (2.23) with respecttog ,,

,ot_ J![ i, \/_x/;ﬂ ] %ﬁﬂ@d“x (2.27)

now, we have the following equations [22]:

o =) (2.28)
g,

which is the condition for the actual evolution of the physical system.

R _ g (2.29)

%
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sf-g 1
NS g (2.30)
Vg%, 2 ¢

since the stress-energy tensor describes the matter, it must be derived

from a matter lagrangian:

SG-gL,)  1_,.
—_=2 A —__ T, 2.31
e, 2 23D

By substituting into equation (2.27), we get:
0= HRW —%Rg‘”j —%T”V}@gw \J-gd’x (2.32)

the expression in brackets must be zero, so:

1 1
hl R*Y ——Rg"" |—=T*"" =0 2.33
( S Re j 5 (2.33)
and
R* —%Rg”” =81GT*"" (2.34)

which is (EFEs). The above form of the EFEs is for the +--- metric sign
convention, which is commonly used in general relativity. Using the

-+++ metric sign convention, which is used in this work, leads to an

alternate form of the EFEs which is [17,24,25]:

R™ —%Rg’” = —87GT* (2.35)
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2.3 The Limiting Curvature Hypothesis (LCH)

As we discussed so far, the singularity theorems of Hawking and
Penrose imply that general relativity gives an incomplete description of
the behavior of spacetime at high curvatures. So, we must implement a
more realistic cosmological model that gives a more comprehensive
description of the behavior of spacetime at high curvatures. This can be
done by modifying EFEs by creating new field equations that achieve our
goals. On the other hand, our new field equations must approach
Einstein’s field equations at low curvatures where Einstein’s theory of
general relativity is working properly. Now, let’s talk about Penrose
diagrams [23], which give a clear explanation of the limiting curvature
hypothesis. Figure (2.5) shows these diagrams which are talking about the
collapsing universe (left) and black holes (right) in Einstein’s theory (top)
and in the nonsingular universe (bottom). C, E, DS and H stand for
contracting phase, expanding phase, de Sitter phase and horizon,

respectively, and wavy lines indicate singularities.
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Figure (2.5) Penrose diagrams

If successful, the above construction will have some consequences.
Consider, for example, a collapsing spatially homogeneous universe.
According to Einstein’s theory, this universe will collapse in finite proper
time to a final “big crunch” singularity (top left Penrose diagram). In our
theory, however, the universe will approach a de Sitter model as the
curvature increases. If the universe is closed, there will be a de Sitter
bounce followed by re-expansion (bottom left Penrose diagram).
Similarly, in our theory spherically symmetric vacuum solutions would be
nonsingular, i.e., black holes would have no singularities in their centers
(bottom right) compared to what is predicted by Einstein’s theory (top

right) which says that a black hole will collapse into a singularity.



2.3.1 Implementing LCH

In order to implement (LCH), we must modify Hilbert-Einstein
action by putting a limit to the Ricci scalar, which is the quantity to be
limited . To illustrate this, let’s go to the analogy [8,23] with the action
for point particle motion in special relativity which can be obtained from
Newtonian mechanics. The starting point is the Newtonian action for a

point particle:
1
S = | L(x,x,0)dt = m| dt —x* 2.36
[ LCe5 0yt = m] dr (2.36)

In classical theory, there is no bound on the velocity. So, this action must
be modified to give a bound on the velocity. By adding a Lagrange
multiplier ¢ which couples tox’, the scalar quantity which is to be

limited, and giving ¢ a potential V() the new action is:
S = mj dtB X+ i’ — V((p)} (2.37)

provided that V(¢) ~ ¢ for |p| > . The constraint equation ensures that
X is bounded.

In order to obtain the correct Newtonian limit for small velocities
(i.e., small ¢), V() must be proportional to ¢° for [p|— 0. As a result, the

simplest potential which satisfies the above conditions is:
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2¢
V(o) =
#) 1+2¢

(2.38)

Eliminating the Lagrange multiplier using the constraint equation and
substituting the result into the action yields the point particle action in
special relativity:

S =mfdn1-i* (2.39)

So, to implement (LCH), we must modify the Hilbert-Einstein action and

postulate an action like [8,23]:
S, :kj[R+¢1R+m(¢l)L/—gd4x (2.40)
Let us considerL(R)=R+@R+V,(p,). At low curvature, L(R) must

approach R so that our action approaches the Hilbert-Einstein action. On
the other hand, in the region of space where the curvature approaches the
limiting value, our action approaches the Hilbert-Einstein action with a

certain cosmological constant.

2.3.2 The new field equations

The field equations corresponding to the above action in equation
(2.40) can be obtained from the variation of the action for matter plus

gravity with respect to g, , the same way we derived EFEs. To derive the

full field equations, a matter Lagrangian L), must be added to the action:
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S, = j (kL(R)+ L, )\— gd"x (2.41)
Now, the problem is to find an expression for L(R) (this will be left for a

future work) so that the variation of the action with respect to g, yields

the following field equations [6]:
v 1 14 1 v v
R* —ERg” _ZA(I -U)g"" =-8aGT* (2.42)

where

2
U= /1_% (2.43)

and Ais a limiting curvature scale and a cosmological constant at the
same time. We restrict R to the range —A<R<AandA>0. My
subsequent work will be based on these field equations.

We notice that equation (2.42) is a modification of Einstein’s field
equations (2.35). We modify Einstein’s field equations by inserting a
certain cosmological constant in it. As we can see, equation (2.42)
approaches the Einstein field equation at low curvatures (when R — 0).

By returning to equation (2.42), it is obvious that there is a limiting
value of curvature |R| = A beyond which the equation become imaginary
leading to a manifest implementation of the limiting curvature hypothesis

the same way as implementing the limiting speed postulate in special

relativity.
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In the following section we will find solutions of the field equation

for different kinds of matter beginning with the limiting state case.

2.3.3 Finding cosmological equations

By contracting the field equation (2.42) with respect to the p and v
indices we get the trace equation:
~R-A(1-U)=-82GT (2.44)

or

(2.45)

where T is the trace of7. Now, we shall introduce the following

notations: [ = % andy = &ZGTT . Equation (2.45) becomes:

BH1-\1-p> =y (2.46)
this equation yields:
287 +2(1-y)B+y* =2y =0. (2.47)

This equation has two solutions:

p=-3l-r) i=r+2y 2:48)

2
The next step is to find differential equations from the field equation that
describe the relation between the scale factor (a), the radius of the

universe, and time for different kinds of matter.

30



2.3.3.1 The limiting state (vacuum dominated universe)

LCH is constructed according to two important points [8]. The
first one is that all curvature invariants are bounded, and the second is that
when these invariants approach their limiting value, a nonsingular de
Sitter solution is taken on. So, at the limiting state we will have a de Sitter
space and thus a vacuum dominated universe. As a result, the stress-
energy tensor vanishes because there is neither pressure nor energy

density in vacuum. So, 7' = 0 and hence y = 0. Now according to equation
(2.48) the value of f corresponding to y = 01is either 0 or -1, and since we
study the limiting state case, we choose f = -1. Now, wheny =0 and

L =—1 the field equation (2.42) becomes:
v
R” +ZAg” =0 (2.49)
and the time-time component of the field equations takes the form [17]:

39 140 (2.50)
a 4

and the space-space components are [17]:

%A—Lz(ac'i+2d2+2k)=0 (2.51)
a

where k& was discussed so far. We can combine equations (2.50) and

(2.51) to get a first order differential equation:
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Q=20 g (2.52)

also we can get a second order differential equation from these equations
by adding them:

L at+k
a— =

0 (2.53)

a
2.3.3.2 The radiation dominated universe

The big bang starts off with a state of extremely high density and
pressure for the universe. Under those conditions, the universe is
dominated by radiation. This means that the majority of the energy is in
the form of photons and other massless or nearly massless particles (like
neutrinos) that move at near the speed of light. As the big bang evolves in
time, the temperature drops rapidly as the universe expands and the
average velocity of particles decreases.

The existence of the Cosmic Microwave Background radiation
(CMB) suggests that the universe was governed by radiation for most of
the first 100,000 years until the energy density of matter became larger
than that of radiation such that the energy of the matter began to dominate
the universe’s evolution [26]. In that epoch, the radiation density or the

photons density decreases just like the matter density so it goes as:
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Photon density = N (2.54)

a3

where N is the number of photons, and a is the scale factor. But not only
does the photons density decrease with time, the average energy per
photon also decreases because the universe is expanding and cooling

therefore we have the following:

Photon energy density 1 (2.55)
a

1 .
the extra term — represents the average energy per photon. In this case,
a

the equation of state becomes that of pure radiation [11,17,27]:
p= g (2.56)

where p is the pressure and p is the energy density. The trace of the stress-

energy tensor vanishes since7 =3p — p, as aresulty =0. We choose =

-1 since we want to choose f = 0 for the empty flat spacetime. The field
equations (2.42) become (for y =0 and f=-1):

R™ +iAg’” = —87GT* (2.57)

the time-time component of the field equations becomes:

391 A~ 8a10p (2.58)
a 4

while the space-space component of the field equations gives:
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%A—Lz(ad 124 +2k)=-87Gp (2.59)
a

Equations (2.58) and (2.59) may be combined to eliminate ¢ and this
yields:

., 8G , A,
- —k 2.60
a 3 o7/ +12a ( )

According to equation (2.55) p depends on the scale factor so p can be
written as [6]:

4
a
p=p.=p - (2.61)

a

where p! and a,are the present values of the radiation density and the

scale factor.
Finally, we will introduce the relation between the scale factor and
time in a radiation dominated universe as suggested by CGR for £ = 0,
which is a singular solution [26];
a(t) = bt (2.62)
where b is a constant.

2.3.3.3 The matter dominated universe

The energy density of the known forms of radiation in the present
universe is less than one-hundredth the density of the rest-mass. In other
words, we have reached a state where the energy of the universe is

primarily contained in non-relativistic matter (matter sufficiently massive

34



that its average velocity is very much less than the speed of light and the
pressure generated there is extremely small compared with the energy
density). This is called a matter dominated universe. The early universe
was radiation dominated, but the present universe is matter dominated. In
the matter dominated universe, which is the present epoch, the main
energy density is that of ordinary matter in galaxies, whose random
velocities are small and which therefore behave like dust. So, we deal
with non-relativistic matter particles, and the pressure is zero. As a result,

the trace of the energy-momentum tensor is equal to (—p)

- 87Gp

andy = . Therefore, y is a function of time because p is a

function of time and so is f because according to equation (2.48) it
depends ony .

The field equations (2.42) can be rewritten as:

R" + f(H)Ag"" =-8aGT"" (2.63)
where  f(¢) = —%(Zﬂ +1-41-8%) andf= % . The time-time

component of equation (2.63) is:
39 f(H)A = -812Gp (2.64)
a

and the space-space components are:
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FOA—-(ai+24> +2k)=0 (2.65)
a

we can use equations (2.64) and (2.65) to eliminate the second derivative
of the scale factor and obtain a first order differential equation:

@ =% oa’ +% f)Ad® —k (2.66)

We can get another second order differential equation by adding
equations (2.64) and (2.65):

ai—a* =k—-42Gpa’ (2.67)

The density in the matter dominated universe is equal to the mass

of the universe divided by its volume, and since the volume is

proportional to the cube of the radius, then matter density depends on the

scale factor according to the following equation:
b
pP=— (2.68)
a

where b is a constant which is approximately equal to the mass of the

present universe. However one can get a second independent equation

from the equations (2.18), (2.48), and by using the following equation:
R=pA (2.69)

this yields:
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A‘; (l—yiq/l—y2+2}/) (2.70)

If we combine equations (2.67) and (2.70) to eliminate the second order

ai+a’ +k=

derivative term we get:

2

a (1—w_q/1—y2+2y) 2.71)

A
a*+k=22Gpa’ +
P 24

It is also possible to get another first order equation by integrating

equation (2.67), and we get:

a* =Ca’ —k-8rGa’l(a) (2.72)
where [ =J.£da and C is a constant that can be evaluated from the
a

present values of the Hubble constant, matter density, and scale factor;

872G k
C=H§—7p0+—. (2.73)

2
a,

Another way to proceed is to find an expression for y in terms of the
scale factor and its derivatives from equations (2.70) and substitute it in

the trace equation after having removed the square root, this yields:

25(aif +34aila® +k)+13(a> + k)

(2.74)
—2Ad*(2ai +a> +k)=0

If we put Y =d’+k in equation (2.74) then?=2c’i. Equation (2.74)
a

becomes:

37



38

2
252(“’_1/] J2AY Ny dV By 2y g (275)
4Aa” \ da ada Aa da Aa a

The scale factor in the matter dominated universe as a function of time for
the three cases of k (k= +1, k=0, k =-1) as predicted by CGR is shown

in figure (2.6).

ko= —1

a .

Figure (2.6) Scale factor vs time in the matter dominated universe [17]

2.3.3.4 Combination of matter and radiation

When the radiation density equals the matter density, the universe
is neither radiation dominated nor matter dominated since the two
densities are equal. In this case we can say that the universe is dominated

by both matter and radiation, the matter in the form of galaxies and



radiation being represented by the microwave background radiation. The
field equations in this case take the form of (2.63). The time-time

component of the field equations is:
35— f()A =—87G(p,, + p,) (2.76)
a

where p, and p, are the matter and radiation densities respectively. The

space-space component is:
FOA- iz(aa +24 +2k)=—82G(p, + p,) (2.77)
a

where p and p, are the matter and radiation pressures respectively. The

two equations can be combined to obtain a first order differential
equation:

a’ =%(pm +p)a’ +%f(t)Aa2 —k (2.78)

Now, let’s look at the behavior of the solution of this differential
equation: for values of the scale factor near the minimum radius (the
minimum radius is obtained by setting the rate of expansion a equal to
zero and k£ = 1 and solving for a), the universe is radiation dominated and
the solution of (2.78) is the same as the solution of (2.60) which stops and
bounces at the minimum radius. For large values of the scale factor the

universe becomes matter dominated and reaches maximum radius and
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collapses. The minimum radius is not zero and the initial and final states

of the universe are not singular.
2.3.3.5 Spherically symmetric solutions

In this section, we will obtain a solution of the field equations
outside a spherically symmetric massive object, and a solution that
represents a collapsing star (this solution will demonstrate the relation
between the star radius and time when the star collapses and dies). After
the formation of the star, the star lives the longest and most stable period
in its life (approximately 10° years). In this period, it burns hydrogen in
its core and converts it to helium, generating heat and light. In this period,
the life of a star is a struggle between the inward pull of gravity and the
outward push of pressure. The force of gravity comes from the attraction
between the core of the star and the outer layers and the pressure comes
from the heat produced by the burning of hydrogen. When the fuel is used
up, the temperature declines and the star begins to shrink as gravity starts
winning the struggle.

As the core of the star burns all the hydrogen into helium at the
end its life, the star becomes a red supergiant. In this stage the core of the
star shrinks, becoming hotter and denser, and the outer layers expand.
After that, different nuclear processes occur like fusion which produces

heavier elements that temporarily stop the core's shrinking. Eventually
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this core collapses (in an instant). As the iron atoms are crushed together
in this gravitational collapse, the core temperature rises to about 100
billion degrees. The repulsive electrical forces between the atoms’ nuclei
overcome the gravitational forces, causing a massive, bright, short-lived
explosion called a supernova. During this explosion, the star's outer layers
are thrown away.

The next stage determines the fate of the star depending on the
remaining mass of the star (the core). For the Sun-like Stars (mass under
1.5 times the mass of the Sun), they will collapse into a white dwarf. If
the star's remaining mass is between 1.5 to 3 times the mass of the Sun, it
will collapse into a neutron star. If the star's remaining mass is greater
than three times the mass of the Sun, the star will collapse and become a
black hole which is an incredibly dense body with a gravitational field so
strong that even light cannot escape. It is a body in which all of the mass
has collapsed gravitationally inside the point of possible escape. This
point of no return, given by the surface » = 2GM, is known as the event
horizon, and can be thought of as the surface of a black hole. The black
hole is an object with a gravitational field so powerful that a region of
space becomes cut off from the rest of the universe, no matter or radiation
that has entered the region can ever escape. As not even light can escape,
black holes appear black. When we talk about black holes we are not

talking about something that is imaginary or does not exist in the real
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world. Cosmologists detected black holes in our galaxy which are not
singular (i.e they have volume and their radii are not zero). For example,
one of these black holes is known as Cygnus X-I which is located in
Cygnus constellation.

Cygnus X-1 is a source located in our galaxy, the Milky Way, at a
distance of about 10,000 light-years from the Earth. It is a binary system
composed of a blue giant star 33 times more massive than the Sun and of
an extremely dense and compact object of 15 solar masses. The compact
object in the Cygnus X-1 binary is most probably a black hole. The
picture in figure (2.7) is a composite image that shows the binary system
Cygnus X-1. This illustration shows how matter from the giant blue star

(left) is accreted in a spiraling disk of material around a black hole (right).

Figure (2.7) the binary system Cygnus X-1 [28]
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The cosmologists determine the location of black holes by
watching the effect of black holes on the coordinate system around them.
They see that the coordinate system around the black holes is curved.
Black holes as presently understood are described by the theory of
general relativity. This theory showed that gravitation is due to curvature
of space that is caused by the presence of masses and predicts that when a
large enough amount of mass is present within a sufficiently small region
of space, all paths through space are warped inwards towards the center
of the volume. When an object is compressed enough for this to occur,
collapse is unavoidable (it would take infinite force to resist collapsing
into a black hole). When an object passes within the event horizon at the
boundary of the black hole, it is lost forever (it would take an infinite
amount of effort for an object to climb out from inside the hole). Figure
(2.8) shows the different stages in the death of giant stars [29];

Death of a Giant 5tar (over
3 times the mass of the Sun)

] s ]

and light.

Figure (2.8) Death of giant stars
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In vacuum flat spactime, the stress-energy tensor vanishes since
there is no pressure and energy density. As a result, ¥ =0and B =0 or -1.
Since we choose f = -1 for the radiation dominated universe, we will
choose S = 0 for the vacuum flat spacetime. By substitutingy = =0, the
field equations (2.42) become:
R*" =0 (2.79)
which are Einstein’s field equations for the vacuum.
2.3.3.6 Derivation of the Schwarzschild solution

Now, let’s return to equation (2.11), to derive this solution we

begin from the standard form of the metric which is [17]:
ds® = B(r)dt> — A(r)dr® —r’d6* —r*sin® Gdp’ (2.80)
The Ricci tensor can be defined by using Christoffel symbols as [17]:

A A
:%_%

= +r;grZ —FZVqu (2.81)

v

by using equations (2.13) and (2.81) we can find the components of the

Ricci tensor:

R -BO 1 (B'(r)J(Am .\ B'(r)]_ 1 (@J 2.82)
2B(r) 4\ B(r) \ A(r) B(r)) r{ A®)

Roa T _A'(r)+B'(r) N 1
w 2A0\ A(r)  B(r) ) A(r)

R,, =sin’ 6R,,
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- B0 1(BM) AW, B@) 1(B()
1t 24A(r) 4\ A(r) \ A(r) B(r) r\ A(r)

R, =0 for u#v

From equations (2.82) we have:

R, R __1(4 B (2.83)
4 B  rl4 B

The Schwarzschild solution represents the solution of EFEs for
empty space so equation (2.79) applies here. As a result, we see that it
will suffice to set the components of the Ricci tensor defined in equations
(2.82) equal to zero, so equation (2.83) requires that B'/B=—-A4"/ A or:

A(r)B(r) = Constant. (2.84)

Forr — o, the standard metric must approach the flat space

metric in spherical coordinates (equation (2.8)), that is:

lim A(r) = lim B(r) =1 (2.85)

from equations (2.84) and (2.85) we get:

A(r) = (2.86)

by using (2.86) in (2.82) we get:

R,, =—-1+B'(r)r+B(r) (2.87)

and since R,, = 0 this yield:



B'(r)yr+B(r)=1 (2.88)

or
By =1 (2.89)
dr

if we integrate (2.89) we get:

rB(r) =r+ Constant. (2.90)
or
B(r) =1+ Constant. 2.91)
r
To find the constant of integration we recall that at great distances
from a central mass M, the componentg,K =-1-2¢=-B(r), where

¢ = —MG/r is the Newtonian potential. As a result, we have:

B(r)=1 —% (2.92)
r
and
A(r)= {1 - 2MG} . (2.93)
r

By using (2.92) and (2.93) in (2.80) we get the Schwarzschild solution. In
section 3.4 we will find a spherically symmetric solution for equation

(2.42) which represents the metric inside the star.
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Chapter 3
Numerical Solutions of the

Cosmological Equations

So far, in the second chapter, we have found linear and nonlinear ordinary
differential equations that represent the cosmological model and the
relation between the scale factor and time for different kinds of matter.
Also we have found a nonlinear ordinary differential equation that
represents the relation between the radius of a giant star and time when
this star collapses to form a black hole. In this chapter, we are going to
talk about equations that we will solve and then find solutions for these
equations. We will display the results that come from solving these
equations by directly plotting the explicit solutions and plotting the
numerical solutions of the differential equations that we did not find

analytical solutions for them.

3.1 The limiting State

Let’s begin with equation (2.50), the solution of this equation with

the use of Matlab is shown in (appendix A) where b = % which is:
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a = a, cosh( %t) 3.1

If k= +1, let’s look at equation (2.53). If we introduce a new variable

A=d*+k then ﬁ:%zﬁ. Now, a :@:@@:@a. As a result,
da da dt dadt da
4 .. . .
< = 2d . In terms of the new variable, equation (2.53) becomes:
a
dA = zﬁ (3.2)
da a

if we integrate (3.2) we get the following equation:

A=ba’ (3.3)
where b is a constant. By substituting the value of 4=a"+k in equation
(3.3) and putting k£ =+1 we get:

i’ =ba’ -1 (3.4)
L . A . .
which is the same as (2.52) withb = o This equation yields:

dr=— 94 (3.5)

Nba* -1

By integration, the solution of (3.4) is found to be:

ue cosh \/Zt
Jb

For simplicity and because we want to know the shape of the solution I

(3.6)
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@ ()

11

10

will solve equation (3.4) by putting b =1. The solution of this equation is

(see appendix A):

a= l+le% e’ = cosh(?)
2 2

this solution is shown in the figure (3.1);

¢ ws  (Limiting state, £=+1)

0 05 * 1.5
£ (s)

Figure (3.1) Scale factor versus time (limiting state; k=+1)

(3.7)
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To create a 3-D plot of this relation we use cylindrical coordinates

and put a=+x"+yp° . According to that, equation (3.7) becomes:

t =cosh™ /x> + y* . Figure (3.2) shows the 3-D plot;

fws @ (Limiting state, L=+1)

x (tm)

Figure (3.2) 3-D plotting of scale factor versus time (limiting state; k=+1)

For the case k& = 0, the solution of equation (2.52) where

d= % and a(0) = a0, is given by (see appendix A):
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2 (m)

A
—t

Vd
a=ae’" =ae'?

2 + 2
LM R L (3.8)
A a,

where a, = L To plot the solution, we put A =10"°m ™. The solution

JA

is shown in figure (3.3).

£(3) x10°

Figure (3.3) Scale factor versus time (limiting state; k=0)
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The 3-D plotting of this relation is shown in figure (3.4).

o T

5
¥ 10

Figure (3.4) 3-D plotting of scale factor versus time (limiting state; k=0)

da

vba* +1

For the case k = -1, equation (3.5) becomes dt =

the integration of this equation gives:



g sinh \/Et

Jb

This solution is not singular. The singularity of this solution at # = 0 is a

(3.9)

coordinate singularity not a real singularity. The solution is shown in figure

(3.5 forb=1.

a vs tlimiting state k=-1)
1 2 T ) 1 1 Ll

10F

a(m)
o

Figure (3.5) Scale factor versus time (limiting state; k=-1)

The 3-D plotting of this relation is shown in figure (3.6).
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?(m) ’ i x{m}

Figure (3.6) 3-D plotting of scale factor versus time (limiting state; k=-1)

3.2 The radiation dominated universe

In the case (k = +1), we will solve equation (2.60). If £ = +1, this
equation becomes:

<2 87ZG 2 A 2
=——pa +—a -1 3.10
@ =——patra (3.10)

4
-0

a . . .
where p = p, = p’ .- This equation can be written as:
a



a2=£2+Qa2—1 (3.11)
a

82Gp, a,
3

in this equation , P = ~1x10* and O = % ~1x107 where G is

the gravitational constant which is equal to 6.67x10™"' N.m*/Kg*, p.is
the radiation density which is approximately equal to 1x10™'Kg/m’, a,
is the present value of the scale factor which is approximately equal to
1x10*m, and A is the curvature constant. We here used the present

value of the curvature constant which is equal to1x10™*m™. By setting

the rate of expansion ¢ =0 in equation (3.11) we have:

» _1£41-4P0Q (3.12)
20 '

H+

If we want a, to be real, PO must be less than% . For the above values of

P and Q, the value of a, =1x10*m, and a_=1x10"m. For different
values of P and Q the values of a,and a_are shown in the following

table:
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P(m"/s?) 0(s™) a, (m) a_(m)
10% 10”7 107 10~
1 0.1 2.98 1.06
0.8 0.2 2 1
0.6 0.3 1.6 0.89

The numerical solution of equation (3.11) for those values of P

w10

and Q is shown in figure (3.7a), (3.7b), and (3.7¢c):

F=1e46; Q=1e-52

Figure (3.7a) Scale factor versus time (radiation dominated

universe, k = +1)
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15 T T T T T T T T T

1.5F

P=1edhb; 0=1e52

1.1

O 1 2 3 4 5 b 7 8 g 10
t(sec) w10
Figure (3.7b) Scale factor versus time (radiation dominated

universe, k = +1)



35
;b P-0.5 0-03
25+ P-0.8.0=0.2

o0 F=1.0=01

a (m)

15

10

5
i)

Figure (3.7c) Scale factor versus time (radiation dominated
universe, k = +1)
the value of the scale factor in figure (3.7a) does not change since
the range of time is short but if we take a large scale, the value of the
scale factor will change and the graph will be more obvious as in figure

(3.7b). The initial condition in this case is a, because any value less than

a, will produce imaginary solutions.

If k= 0, equation (2.60) becomes:
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a2=%m2+ﬁa2 Or d2=£2+Qa2 (3.13)
3 12 a

4

a . . . .
where p = p! —. The numerical solution of this equation for the above
a

values of p’,a,,and A (here P = ~1x10* and

87Gp,a,
3
A -52 - .

0 :E ~1x107") is shown in figure (3.8).

1 5 T T T T T T T T T

|:| | | | | | | 1 | 1
a 100 200 300 400 500 GO0 70O SO0 00 1000
t(s)

Figure (3.8) Scale factor versus time (radiation dominated

universe, k = 0)
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The square of the scale factor as a function of time is shown in figure

(3.9);

60

50

48T 2= 2esz3t + 1

40

35

30

a (mjj

25

20

N\

15

AN

10

N\

S

£ (s8]

25

=21

w10

Figure (3.9) Square of the scale factor versus time

(radiation dominated universe, k = 0)

The linear fitting of the solution is (see figure (3.9)):
a’ =2x10"t+1 or a=(2x10%¢t+1)"?

If k= -1, equation (2.60) becomes:

(3.14)



d2:¥m2+%a2+1 Or d2=£2+Qa2+1. (3.15)
a

The numerical solution of equation (3.15) for P=2 and QO=lis (see

appendix A):

1
+—(~2+5.29sinh(2¢ +0.973)) (3.16)

a

N | —

this solution is shown in figure (3.10).

@ (tn)

|:IIZI 0.2 0.4 06 0.8 1 1.2 14 16 1.8

£is)

Figure (3.10) Scale factor versus time (radiation dominated universe, k
= -1)
If we change the values of P and O, we will obtain the same solution but only

with different values of the constants in the solution. We choose any number



greater than zero as the initial conditions in (k = 0) and (k = -1) cases to avoid
dividing by zero which produces unknown solutions. In figure (3.9) we choose
a short time interval in order to display the initial condition clearly on the graph

and to show that the solution is not singular.

3.3 The matter dominated universe

In this case, we will continue from equation (2.75). To avoid
dealing with quantities that are depending on time (unknown functions of

time such as f(?) in equation (2.66) and y in equations (2.70) and (2.71))

we will go in the following procedure:

It is possible to expand Y in powers of %:

Y=Y0+%+£+... (3.17)

A2
then ¥ satisfies the following equation:

%+1YO:O (3.18)
da a

which has the following solution:

Y, =—. (3.19)

.1 . .
At the first order in 3 Y, satisfies the equation:
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2
ﬁJrlyl _£=0 (3.20)

da a 8a’

which has the following solution:

Y, :l(D—wzJ (3.21)

3
a 8a

From equations (3.17), (3.19), and (3.21) and by putting ¥ =a° +k we

can write a first order differential equation for the scale factor:

., 3C* C+D
a’+ =

- —k 3.22
8a’ a ( )
or
d2+£4—£:—k (3.23)
a a

where A and B are constants. The sign of 4 is positive since 4 =

The sign of B may be either positive or negative but if we put it
negative a will be imaginary for £k = +1. So in our work we use positive
values for 4 and B. By setting the rate of expansion ¢ =0and k= +1, and
substituting numerical values for A and B then equation (3.23) will have
two real roots which represent the minimum radius from which the
universe starts to expand and the maximum radius at which the universe
will stop expanding and collapse. The following table shows the values of

the minimum and the maximum radii at different values of 4 an B;
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Minimum Maximum
A B radius(m) radius(m)
4 6 0.9236 5.9813
10 5 1.4066 4.9158
9 4 1.5411 3.8412

The solution is shown in figure (3.11a) for different values of 4

and B;

D I I I I [ I
5,

Figure (3.11a) Scale factor versus time (matter dominated

universe, k = +1)



For large values of the scale factor and for k£ = +1, equation (3.23)

is reduced to @* =——1. This differential equation represents a Cycloid
a

[30]. This equation comes from the following parametric equations:
B B , :
t= E(t —sint') and a zz(l—cost )[31]. Figure (3.11b) shows the graph

of the scale factor with time according to the parametric equations and for

B=2.

35

25

& (1)

0.5

D | 1 1
2 3
£ (s)

Figure (3.11b) scale factor vs time in the matter dominated

universe for k = +1 as predicted by CGR.
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The matter density is a function of the scale factor according to
equation (2.68); as a result, it is a function of time too. The contraction of
equation (2.63) implies that:

R+4f(t)A =87Gp or A—AQRB+1-+/1—- f*)=82Gp.

So since p is a function of time then £ will be a function of time
too. Figures (3.12) and (3.13) show p and £ as functions of time for
A=10 and B=5;

I:I'lll 1 1 1 1 1 1 1

0.35

0.3

0.25

0.2

rho

0.15

0.1

0.05

Figure (3.12) matter density versus time (matter dominated

universe, k = +1)
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08k J

0895 .

105+ .

b=

'”u 1 2 3 4 5 6 7 B

1

Figure (3.13) Beta versus time (matter dominated universe; = +1)
For /=0 anda = 0, equation (3.23) has one real root which represents

the minimum radius from which the universe starts expanding forever.
The signs of 4 and B are also positive for the same reasons discussed
above (in the case k = +1). The following table shows the value of the

minimum radius at different values of 4 an B;
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A B Minimum radius(m)
4 6 0.8736
10 5 1.2599
9 4 1.3104

The numerical solution of equation (3.23) for different values of A

and B is shown in figure (3.14);

4

35

25

¢ (m)

£ (s)

Figure (3.14) Scale factor versus time (matter dominated universe, k = 0)

For large values of the scale factor, the numerical solution of

equation (3.23) for A=10 and B=5 is shown in figure (3.15);



0 0.5 1 1.5 2 25 3 35 4
£ (=9 x 10%°

D | 1 |

Figure (3.15) The cube of the scale factor versus the square of time
(matter dominated universe, k = 0)
It is obvious from figure (3.15) that:
a ~t (3.24)
or

a=t>" (3.25)
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For k= -1 and a =0, the sign of 4 is positive but the sign of B is
either positive or negative. In both cases, equation (3.23) has two real
roots, one is positive and the other is negative. The negative real root is
ignored since the scale factor is always positive. The positive real root
represents the minimum radius from which the universe starts expanding
forever. The following table shows the value of the minimum radius at

different values of 4 an B;

A B Minimum radius(m)
4 -6 6.0183
10 5 1.1744
9 -4 4.1279

The solution is shown in figure (3.16) for different values of 4

and B;
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il I 1 1 1 1
3 4 5
£(z)

Figure (3.16) Scale factor versus time (matter dominated

universe, k = -1)



The three cases are shown together in figure (3.17).

12

A-10B-=5

72

D 1 1 1 1 1 1 1
2 3 4 5
£is)

Figure (3.17) Scale factor versus time (matter dominated

universe, the three cases)

3.4 The Spherically symmetric solution

The solution of the field equations outside a spherically symmetric
massive object will be exactly the Schwarzschild solution (2.11) where
the quantity (2GM) in this equation is the gravitational radius of the star

with mass M. Now let’s go back to figure (2.3). This figure shows the



shape of the solution outside a massive object which is, in this case, the

earth. The two-dimensional Schwarzschild solution is:

+12d 6> (3.26)

wherer, =2GM . If r— o the solution becomes ds* =dr’+r’d6’
which is the two-dimensional flat space metric in spherical coordinates.
This means that at a very large distance from the massive object the space
is flat. In rectangular coordinates, ds’ =dx” +dy’ +dz’ ords’ =dr’ +dz" .

Now let dz = z'dr then equation (3.26) becomes:

2

drtd = (12 (3.27)
T
r
and
12 1
= -1 (3.28)
r
1—_&
r
this implies that:
r
z'= h (3.29)
r—r

and since z = Iz'dr ;

z=2r,(r-r,) (3.30)

this solution is shown in figure (3.18).
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¥ <40 -a0 X

Figure (3.18) Schwarzschild solution
The internal solution (inside the star) is assumed to be
homogeneous and isotropic and that the particles inside the star become
extremely relativistic after being compressed to densities above the
nuclear density. This means that the equation of state becomes that of

pure radiation. Now, let’s discuss the analogy between the radiation
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dominated universe with positive curvature and the star. After being
compressed to densities above the nuclear density, the particles inside the
star become extremely relativistic, so we can consider the star as radiation
dominated universe with positive curvature (kK = +1) since the star is
positively curved because it is a spherical object. We assume that the
density and the pressure are functions of time only.

Now, the cosmological equations that govern the radiation
dominated universe will surely be suitable for describing the collapsing of
the star. So by putting R, which is the radius of the star, instead of a,
which is the radius of the universe, in equation (2.60) we get:

=%pR2+%R2—1 (3.31)

RZ

the density of the collapsing star depends on the radius of the star

according to the following equation:

4

R
=Py (3.32)

where p,, R, are the initial density and radius of the collapsing star
respectively (the initial density and radius of the remaining mass of the
star).

The solution of the differential equation (3.31) is shown in figure
(3.7). It is very important to notice that the collapsing star will stop at a

minimum nonsingular radius and will never reach a singularity, which is
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consistent with Penrose diagrams. According to that, no singularity is

developed at the center of the collapsing star.
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Chapter 4

Analysis and Comments

In this chapter, we will analyze the results that we got in chapter 3
and we will check if they agree with LCH. First we will discuss the
limiting state case. In this case LCH suggests that when all curvature
invariants approach their limiting value, a nonsingular de Sitter solution is
taken on. So, at the limiting state we will have a de Sitter space. As we
can see, the solutions (3.1) and (3.6) are the same as equation (2.3). From
the plots of the limiting state case, the solutions are not singular, the
universe begins from a nonsingular state (the radius of the universe is not
zero) at t+ = 0 and expands. On the contrary, CGR predicts that the
universe started from a singular state and expanded. In the case (k = -1)
the solution is not singular. The singularity of this solution at # =0 is not a
real singularity. The most important case is when k = +1 which tells us
that the universe will recollapse after it reaches the maximum radius and
when it collapse to the minimum radius, we will reach a de sitter solution
since the curvature approaches its limiting value. The de sitter solution in
this case is not singular so the universe will reach a minimum radius and

expand again.

77



In the radiation dominated universe when k = +1, the universe has
a closed topology. It bounces from a nonsingular state at a minimum
radius and expands. It will never reach the big crunch singularity as
suggested by CGR. In this case the behavior of the universe agrees with
Penrose diagrams and with LCH which suggests that, for spherically
symmetric spacetime, a collapsing universe will not end up in a big
crunch, but it will bounce and expand. The reason is that when the radius
of the universe becomes small the density becomes high and so is
pressure because the matter in the universe will become relativistic, then
the outward push of pressure will overcome the inward pull of gravity,
and this will cause the expansion of the universe. When k& = 0, the solution
that we found, (equation (3.14)), is the nonsingular version of equation
(2.62) which is suggested by CGR. Since the universe has open topology,
it will start from a nonsingular state and expand forever. When & = -1, the
behavior of the universe is the same as the case when £ = 0 because, in
this case, it has an open topology too.

In the matter dominated universe, and when k& = +1, the universe
expands from a nonsingular radius and reaches a maximum radius and
then stop and collapse under the influence of gravity. The behavior of the
universe can be explained as follows: as the universe expands the
pressure drops down, as a result the force of gravity between the matter

components of the universe including the dark matter will overcome the
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force from pressure and this will cause the universe to stop and collapse
again. The universe will go on collapsing until the radius of the universe
become small. The universe at that moment will become a radiation

dominated universe and it will bounce at (a=0;a =a,) and expand

again. This behavior of the universe in this case is consistent with Penrose
diagrams.

At large values of the scale factor, equation (3.23) will be reduced

to Einstein's equation (a@> =——k ). The solution of this equation when k&
a

= +1 is shown in figure (2.6). The universe will stop and collapse (see
[17], p481-483). When k=0, and for large values of the scale factor, the

solution that we found, (equation (3.25)), is the same solution which is

suggested by CGR [17] which is (@ =¢>"). Since the universe has open
topology, it will start from a nonsingular state and expand forever. When
k = -1, the behavior of the universe is the same as the case when £ = 0
because, in this case, it has an open topology too. When we compare
between figures (2.6) and (3.17) we find that the two figures agree with
each others in the region where the scale factor is large and the curvature
is small since equation (2.42) is reduced to EFEs at low curvatures. But at
high curvatures and at small values of the scale factor, the difference
between the two figures becomes clear. The solutions in figure (2.6) are

singular but the solutions in figure (3.17) are not. The idea is: the
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solutions of equation (2.42) are the same as Einstein's solution at low
curvatures but they are different at high curvatures.

For spherically symmetric solutions, there will be no singularity
inside the event horizon; instead, a de Sitter universe will be reached as
we see in Penrose diagrams. The giant collapsing star will collapse to a
minimum radius and expand again. The reason is similar as that in the
radiation dominated case with closed topology, that when the radius of
the collapsing star becomes small the density becomes high and the
particles inside the star will be relativistic and the pressure becomes high.
In that case the pressure inside the star will overcome the force of gravity,
and this will cause the expansion of the star. CGR predicts a singularity in
the center of the black hole, but LCH suggests that the radius of the star
will reach a minimum nonsingular value and will never reach zero
resulting in a nonsingular black hole. Finally, the plot in figure (3.18)
which represents the solution (3.30) is consistent with figure (2.3), the
curvature decreases as we go away from the black hole or any other
massive object and increases near the object. At last, we conclude that all
solutions are nonsingular and this is consistent with our hypothesis “the

Limiting Curvature Hypothesis”.
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Appendix A

Numerical Solutions

1. Limiting State

// solving equation (2.50)

>> a=dsolve('D2a-b*a=0',"a(0)=a0','Da(0)=0")

q=
a0*cosh(b”(1/2)*t)
k=+1

>> a=dsolve('Da=(a"2-1)"(1/2)",'a(0)=1")
a=

(1/2+1/2*exp(2*t))*exp(-t)

/1 2-D plotting

>>1=0:0.1:3;

>> a=cosh(t);

>> plot(t,a)

// 3-D plotting

>> [x,y]=meshgrid(-13:2:13);

>> z=acosh(sqrt(x."2+y."2));

>> surfc(x,y,z);
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k=0

>> a=dsolve('Da=(d*a"2)"(1/2)','a(0)=a0")
a=

exp(d™(1/2)*(t+log(a0)/d"(1/2)))

// 2-D plotting

>>t=0:100:100000;
>>a=10000*exp(2.88688e-5*1);

>> plot(t,a)

// 3-D plotting

>> [x,y]=meshgrid(-134349:1.4142¢4:134349);
>> 7=x."2+y."2;

>> a=sqri(2);

>> b=a/10000;

>> c=log(b);

>> d=c*3.4639¢4;

>> surf(x,y,d);
k=-1
>>1=0:0.01:3;
>> a=sinh(t);

>> plot(t,a)
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// 3-D plotting
>> [x,y]=meshgrid(-12:2:12);
>> z=asinh(sqrt(x.”2+y."2));

>> surfc(x,y,z);

2. Radiation Dominated Universe

k=+1

// finding a + and a . for different values of P and QO
solve('1+0.1*a"4-a"2=0","a")

ans =

[ -1.0616104058422671258159534942517]

[ 1.0616104058422671258159534942517]

[ -2.9787553350699041400414946820376]

[ 2.9787553350699041400414946820376]

>> solve('0.8+0.2*a"4-a"2=0","a")

ans =

&3



>> solve('0.6+0.3*a"4-a"2=0",'a")

ans =

[ -.88586091627211424411238045875781]

[ .88586091627211424411238045875781]

[ -1.5964284419775486855698043212680]

[ 1.5964284419775486855698043212680]

stk ok ok ok sk ks ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok
function adot=rad dom_1(t,a)
adot=(1/a"2+0.1*a"2-1)*(1/2)

stk ok ok ok sk ok sk ok ok ok ok kR ok ok ok ok ook ok ok ok ok
function adot=rad dom_11(t,a)
adot=(0.8/a"2+0.2*a"2-1)"(1/2)

stk ok ok ok sk ok sk ok ok ok ok kR ok ok ok ok ok sk ok ok ok ok
function adot=rad dom_111(t,a)
adot=(0.6/a"2+0.3*a"2-1)"(1/2)

stk ok ok ok sk ks ok ok ok ok ks ok ok ok ok ok sk ok ok ok ok
>>[t,a] = ode45('rad dom 1',[0 10],2.98)

>>[tl,al] = ode45('rad_dom 11',[0 8],2.0001)
>>[t2,a2] = ode45('rad dom 111',[0 7],1.6)

>>hold on

>>plot(t,a)

>>plot(tl,al)
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>>plot(t2,a2)

>>hold off

k=0

function adot=rad_dom_0(t,a)

adot=(1e46/a"2+1e-52*a"2)"(1/2);

st ok ek ks ko o ok ok kst ok sk ok ok ok ok kb ok o ok ok kb ok ok ok ok ok
[t,a] = ode45('rad_dom 0',[0 1e3],1)

plot(t,a)

st ok ok ks ook o ok ok kst kb ok ok ok ok kb ok ok ok ok kb ok ok ok ok ok
for i=1:321

b(i,1)=a(i,1)"2

end

plot(t,b)

=1

a=dsolve('Da=(2/a"2+a*2+1)(1/2)",'a(0)=1")
4=
1/2*(-2-2*77(1/2)*sinh(2*t-asinh(3/7*77(1/2))))(1/2),

~1/2%(-2-2%77(1/2)*sinh(2*t-asinh(3/7*7°(1/2))))(1/2)

3. matter dominated universe

k=+1
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//finding the roots of equation (3.23) for A=4; B=6;
>> solve('6*a”3-4-a"4=0'","a")
ans =
5.9813
ans =
0.9236
ans =
-0.4525 + 0.7206i
ans =
-0.4525 - 0.7206i
//finding the roots of equation (3.23) for A=10; B=5;
>>solve('5*a”3-10-a"4=0","a")
ans =
4.9158
ans =
1.4066
ans =
-0.6612 + 1.0045i
ans =
-0.6612 - 1.00451
//finding the roots of equation (3.23) for A=9; B=4;

solve('4*a"3-9-a"4=0","a")
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ans =
3.8412
ans =
1.5411
ans =
-0.6912 + 1.0211i
ans =
-0.6912 - 1.02111

stk ok ok ok sk ok ok ok ok ok ok sk Rk ok ok ok ok R Rk ok ok ok ok ok ok
// solving equation (3.23) for A=10 and B=5;
function adot=matt dom_1(t,a)
adot=(5/a-10/a™4-1)(1/2);

s ok ok ok sk sk ok ok ok ok sk sk Rk ok ok kR Rk ok ok ok o
[t,a] = ode45('matt dom 1', [0 7.6], 1.4066)
plot(t,a)

stk ok ok ok ks Rk ok ok ok ok sk Rk Rk R R ok Rk ok ok
// plotting the matter density with time;
[t,a]=ode45('matt dom 1',[0 7.62],1.4066)

for i=1:45

rho(i,1)=1/a(i,1)"3

end

plot(t,rho)
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// plotting beta with time;

solve('-B-1+sqrt(1-B”2)=rho','B")

for i=1:45
B(i,1)=-1/2-1/2*rho(i,1)-1/2*(-rho(i,1)"2-2*rho(i, 1 )+ 1)"(1/2)
end

plot(t,B)
k=0

// finding the roots of equation (3.23) for A=9 and B=4;
>>solve('4*a”3-9=0",'a")
ans =
1.3104
ans =
-0.6552 + 1.1348i
ans =
-0.6552 - 1.1348i
// finding the roots of equation (3.23) for A=10 and B=5;
>>solve('5*a”3-10=0",'a")
ans =
1.2599
ans =

-0.6300 + 1.09111
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ans =

-0.6300 - 1.09111
// finding the roots of equation (3.23) for A=4 and B=6
>>solve('6*a”3-4=0",'a")
ans =

0.8736

ans =

-0.4368 + 0.7565i
ans =

-0.4368 - 0.75651
// solving equation (3.23) for A=10 and B=5;
stk ok ok ok ks Rk ok ok ok ok sk Rk ok ok R ok ook ok ok
function adot=matt_dom_0(t,a)
adot=(5/a-10/a"4)"(1/2);
stk ok ok ok ok sk ok ok ok ok ok sk Rk ok ok R ok R ok ok ok
>>[t,a]=ode45('matt_ dom 0',[0 2],1.26)
>>plot(t,a)
sk ok ok ok kR Rk ok R KR KR KRR Rk R R R KRR ok ok
>>[t,a]=ode45('matt_dom 0',[0 2¢10],1.26)
>>for 1=50:145

a3(i,1)=a(i,1)"3

b

&9



t2(1,1)=t(i,1)"2
end
>>plot(t2,a3)

sk 3k s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk sk ki skok

k=-1

// finding the roots of equation (3.23) for A=9 and B=-4;
>> solve('-4*a"3-9+a"4=0",'a")
ans =
4.1279

ans =

-1.2006
ans =

0.5363 + 1.2363i
ans =

0.5363 - 1.2363i
// finding the roots of equation (3.23) for A=10 and B=5;
>> solve('5*a*3-10+a"4=0",'a")
ans =

-0.5490 + 1.1731i
ans =

-0.5490 - 1.17311
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ans =

1.1744
ans =

-5.0764
// finding the roots of equation (3.23) for A=4 and B=-6;
>> solve('-6*a"3-4+a"4=0",'a")
ans =

6.0183
ans =

-0.8364
ans =

0.4090 + 0.7920i
ans =

0.4090 - 0.79201
// solving equation (3.23) for A=10 and B=5; and for A=9 and B= -4
stk ok ok ok stk sk Rk ok ok ok ok sk Rk Rk ok R ok ok ok ok
function adot=matt dom_ minusl(t,a)
adot=(5/a-10/a"4+1)"(1/2)
stk ok sk ook Rk Rk ok R R KR KRR Rk R R R R Rk ok ok
function adot=matt dom minus11(t,a)
adot=(-4/a-9/a4+1)"(1/2)

>k ok 2 sk ok sk sk s ok s sk sk sk sk sk sk s sk sk sk sk s sk s sk s sk sk sk sk s ke s skeosk ok ko sk
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[t1,al]=ode45('matt dom minus11',[0 10],4.128)
[t,a]=ode45('matt_ dom minusl',[0 10],1.1744)
hold on

plot(t,a)

plot(tl,al)

hold off

// plotting the three cases;
[t,a]=ode45('matt dom 1',[0 7.62],1.4066)
[t1,al]=ode45('matt dom minusl',[0 7.62],1.1744)
[t2,a2]=0de45('matt dom 0',[0 7.62],1.26)

hold on

plot(t,a)

plot(tl,al)

plot(t2,a2)

hold off

sk ok s sk sk sk sk sk ok s sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk s sk sk sk skok skok

Spherically symmetric solution

// plotting solution (2.30)
>>[X,Y] = meshgrid(-38.2525:4.5003:38.2525);
>>for i=1:17

for j=1:17



s(1.))=X (1) 2+Y (1,)"2;
1(i.j)=sqrt(s(i,j));
a(i,))=r(i)-3;
b(i,j)=sqrt(a(i.j));
c(i,))=3.4641*b(i,));
d(i,j)=-3.4641*b(i,));
end

end

>> surf(X,Y,c)

>> surf(X,Y,d)
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